MEASUREMENT OF T-ODD EFFECTS IN THE NEUTRON INDUCED FISSION OF ²³⁵U AT A HOT SOURCE OF POLARIZED RESONANCE NEUTRONS

Yu.N. Kopatch¹, V.V. Novitsky^{1,2}, G.S. Ahmadov^{1,6}, A.M. Gagarski³, D.B. Berikov^{1,7}, K.Sh. Zhumadilov⁷, G.V. Danilyan^{1,2}, V. Hutanu⁴, J. Klenke⁵, S. Masalovich⁵

¹Joint Institute for Nuclear Research, Dubna, Russia

²Institute for Theoretical and Experimental Physics of National Research Centre "Kurchatov Institute", Moscow, Russia

³Petersburg Nuclear Physics Institute of National Research Centre "Kurchatov Institute", Gatchina, Russia

⁴Institut für Kristallographie, RWTH Aachen and Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum (MLZ), Garching, Germany ⁵Forschungs-Neutronenquelle Heinz Maier-Leibnitz, Garching, Germany ⁶National Nuclear Research Centre, Baku, Azerbaijan

⁷L.N.Gumilyov Eurasian National University, Astana, Kazakhstan

Historical background:

- T-odd effects in ternary fission (experiments at the ILL, Grenoble)
- T-odd effects in the γ-ray and neutron emission from binary fission (experiments at the HMI, Berlin and FRM-II, Garching)
- Interpretion of the T-odd effects in fission
- New experiment at the hot neutron source of FRM-II
 - Experimental setup
 - Pirst preliminary results
- Summary and outlook

- A I I I A I I I I

The T-odd effects in fission of heavy nuclei have been known since more than a decade. The angular distribution for one of the fission fragments (FF) and ternary particles (TP) at given neutron spin (σ) can be written as:

$$W(heta, arphi) \sim 1 + < D > \cdot \sigma \cdot [p_f imes p_lpha]$$

 p_f, p_α - momentum of one of the FFs and the TP; D - coefficient measuring the size of the triple correlation $\sigma \cdot [p_f \times p_\alpha]$;

Experiments at the ILL: TRI-effect

1998 - discovery of the <u>TRI – effect</u> in the ternary fission of ^{233}U P. Jesinger, A. Kotzle , A.M. Gagarski , F. Gonnenwein , G. Danilyan et al, NIM A 440 (2000), p. 618-625

 $W = \mathbf{1} + D_{TRI} \cdot \sigma \cdot [\mathbf{p}_{LF} \times \mathbf{p}_{t}] \quad D_{TRI}$

 $D_{TRI} = \frac{N_{up}^{\mathbf{0}} - N_{down}^{\mathbf{1}}}{N_{up}^{\mathbf{0}} + N_{down}^{\mathbf{1}}}$

Berikov Daniyar - JINR, FLNP, Junior Researcher

May 28 - June 1, 2018, ISINN-26, Xi'an, China

Experiments at the ILL: ROT-effect

2005 - discovery of the <u>ROT – effect</u> in the ternary fission of ^{233}U F. Goennenwein, M. Mutterer, A. Gagarski, I. Guseva, G. Petrov et al,Phys. Lett. B 652 (2007) 13.

 $W = \mathbf{1} + D_{ROT} \cdot \sigma \cdot [\mathbf{p}_{LF} \times \mathbf{p}_T](\mathbf{p}_{LF} \cdot \mathbf{p}_T) \quad A_i = \frac{1}{2}$

Experiments at the HMI (Berlin): ROT-effect in the γ -ray emission from $^{235}U(n, f)$

ROT asymmetry coefficients in units of 10^{-4}

Angle to the fission axis	235 U
0	-0.1 ± 0.3
$\pi/8$	$+0.8\pm0.2$
$\pi/4$	$+1.5\pm0.2$
$3\pi/8$	$+0.7\pm0.3$
$\pi/2$	-0.3 ± 0.3

4 日 2 4 周 2 4 月 2 4 月

G.V. Danilyan, P. Granz, V.A. Krakhotin, F. Mezei, V.V. Novitsky, V.S. Pavlov, M. Russina, P.B. Shatalov, T. Wilpert, Phys. Lett. B 679 (2009) 25–29

Experiments at the FRM-II: ROT-effect in γ -ray and neutron emission

G. V. Danilyan, J. Klenke , V. A. Krakhotin, Yu. N. Kopach, V. V. Novitsky, V. S. Pavlov, and P. B. Shatalov, Phys. At. Nucl., 2011, Vol. 74, No. 5, pp. 671–674.

2011 - Search for the TRI- and ROT – effects in the γ -ray and neutron emission from fission of ²³³ U and ²³⁵ U at the MEPHISTO instrument (FRM-II reactor, Garching).

Summary of results for the polarized cold neutron beam

Fission product	Angle to the fission axis	233 U	235 U
γ -rays	22.5	$+2.8\pm1.7$	-12.9 ± 2.4
γ -rays	45	$+6.3\pm1.6$	-16.6 ± 1.6
γ -rays	67.5	$+6.8\pm2.4$	-20.0 ± 1.8
neutrons	22.5	$+4.8\pm1.6$	-21.2 ± 2.5

ROT asymmetry coefficients in units of 10^{-5}

イロト イポト イヨト イヨト 三日

1. Historically the first attempt to explain the nature of the TRI-effect was based on the statistical model (V.Bunakov, G. Petrov, F. Goennenwein. 2000, ISINN-8). 2. After the ROT-effect discovery the semi-classical model of deformed fissionning system rotation has been proposed (A. Gagarski, I. Guseva, F.Goennenwein. et al). 3. Hypothesis of the "scission γ -emission" for the γ -rays ROT-effect explanation in the ²³⁵U binary fission (G.Danilyan et al. 2008).

- 4. Explanation of the ROT-effect for the γ -rays by the angular anisotropy of the prompt γ -rays, emitted from fission fragments (V.Novitsky, 2010).
- 5. Calculations of the ROT-effects for the γ -rays and neutrons by Guseva, 2010 6. The quantum mechanical explanations of the T-odd asymmetry effects with taking into account the interference of neutron resonances (V. Bunakov, S. Kadmensky, 2006 -2009).
- 7. Theoretical approach of spin-orbital interaction for T-odd asymmetry effects explanation (*A. Barabanov, 2011, ISINN-19*).
- 8. Comprehensive model description of all experimental data on T-effects in ternary fission (A.Gagarski et al, Phys. Rev. C 93, 054619, 2016).

The POLI instrument at the FRM-II reactor

Photo of the experimental setup

Berikov Daniyar - JINR, FLNP, Junior Researcher

May 28 - June 1, 2018, ISINN-26, Xi'an, China

э

→ Ξ →

Gas pressure \sim 2.5 bar

Neutron polarization

 $T = T_0 \cdot e^{-\eta} \cdot \cosh(\eta P_{He}) \quad P = \tanh(\eta P_{He})$

Dependence of the transmission and the degree of polarization of neutrons on the degree of polarization of the ${}^{3}He$.

Relaxation time was about 40 hours, therefore both cells were replaced every 24 hours.

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

イロト イポト イヨト イヨト

Layout of the experimental facility. View from the beam counters

The chamber was filled with CF_4 gas at a pressure of about 10 mbar.

Detectors of γ -rays and neutrons

8 cylindrical plastic scintillators at angles ±22.5, ±67.5, ±112.5, ±157.5
4 Nal scintillators at angles ±45, ±135

Time-of-flight spectrum from one of the plastic_detectors.

Results

Count rates asymmetry $R(\theta) = \frac{N_{+}(\theta) - N_{-}(\theta)}{N_{+}(\theta) + N_{-}(\theta)}$

The angular dependence in the first approximation can be fitted by the function

 $F = A \cdot sin(2\theta)$

- The ROT-effect has been measured for the first time in the lowest resonance of ^{235}U (0.3 eV).
- For gamma-rays, the value of the ROT effect differs from zero at the level of 2σ , for neutrons no statistically significant effect in the limits of errors was observed.
- In this year a new experiment is planned, for the 1.14 eV resonance where the effect should be larger than for cold neutrons and where practically only the J=4 spin state is present.

Thank you for your attention!!!